Status of Hydrogen development in Europe and perspectives for the use of hydrogen in inland navigation

Expert Meeting on Development of Ports and Port Operations

21.03.2023

HYDROGEN EUROPE in numbers

450+ Members

We encompass the entire value chain of the hydrogen ecosystem: from production, distribution to end uses, including Industry, EU regions & H2 National Associations. <u>Meet Our Members</u>

120k+ Followers on Social Media

Why hydrogen for water transport ?

Reducing GHG emission in the transport sector is crucial for climate change and air quality. The EU Green Deal sets the objective to reduce by 90% the CO2 emissions of transport by 2050.

Almost 100% of inland vessels are fuelled by gasoil, emitting CO2 but also nitrogen oxides (Nox), particulate matter (PM) and sulphur dioxide (SO2). Given its big role in European freight, there is a great potential for inland waterways industry to become environmentally friendly.

Potential issues and challenges of the use of hydrogen in water transport:

- Relatively low volumetric energy density
- High production costs of renewable hydrogen
- Safety concerns and high inflammability

The advantages of hydrogen propulsion technologies for water transport:

- Can be used in fuel cells, dual fuel mixture with conventional fuels, or replacement in the combustion process
- If produced from renewable energy, hydrogen enables reduction of up to 100% of Well-to-wake GHG emissions
- Less air pollution in cities with inland ports ;
- Offers potential synergy opportunities between the shipping sector, industrial base in ports and the energy system
- Ports are set to become key hubs of the hydrogen economy

Hydrogen-based options for shipping

Lack of a clear preferable option is holding back investments

The most energy-dense fuels are also the most expensive ones

COST OF FUEL

Lowest TCO zero-emission option

There is not going to be a one fit-for-all solution

Lowest TCO zero-emission option

There is not going to be a one fit-for-all solution

Lowest TCO zero-emission option

The is not going to be a one fit-for-all solution

- The suitability of hydrogen as a fuel is heavily depending on the business model and the required fuel autonomy
- For operating profiles which allow for short distance / frequent refuelling – compressed hydrogen is the most cost – efficient option
- For inland shipping we see limited economic viability for e-fuels – especially if CO2 sources are limited to DAC

	Most profitable option vs voyage distance											
Renewable-CGH2-PEM	10	50	100	150	200	300	400	500	600	800	1000	
Inland Container barge 0-+ dwt												
Inland Bulk cargo barge 0-+ dwt												
Inland Cruise 0-+ dwt												
Inland Tow/pusher barge 0-+ dwt							1					
Inland product tanker 0-+ dwt												
Inland RoRo cargo 0-+ dwt							1					
Inland ferry - ro-pax 0-+ dwt												
Inland Ferry - pax only 0-+ dwt												
Bulk carrier 0-9,999 dwt												
Container 0–999 TEU												
Container 1,000–1,999 TEU												
General cargo 0-4,999 dwt												
General cargo 5,000-9,999 dwt												
Oil tanker 0-4,999 dwt												
Ferry-pax only 0-299 GT												
Ferry-pax only 300-999 GT												
Ferry-pax only 1,000-1,999 GT												
Ferry-pax only 2000-+ GT												
Cruise 0–1,999 GT												
Cruise 2,000-9,999 GT												
Ferry - ro-pax 0-1,999 GT		1										
Ferry - ro-pax 2,000-4,999 GT												
Ferry - ro-pax 5,000-9,999 GT												
Ferry - ro-pax 10,000-19,999 GT												
Ferry - ro-pax 20,000-+ GT												
Ro-ro 0-4,999 dwt												
Ro-ro 5,000-9,999 dwt												
Ro-ro 10,000-14,999 dwt												
Ro-ro 15,000-+ dwt												
Tug 0-+ GT												
AHTS 0-+ CT							i i					
CTV 0-+ GT												
PSV 0-3000 dwt												
PSV 3000+ dwt												

NH3

LH2 CGH2

MGO

Methanol LOHC

CO2 tax break even-point

For most business cases there is still a sizeable financial gap for hydrogen based options

RED II REVISION

TARGETS

EC's Proposal	40% RES by 2030 45% (RePowerEU)	Transport 13% GHG reduction by 2030	Transport 2.6% RFNBOs by 2030 5% (RePowerEU)	
Council's Proposal	40% RES by 2030	Transport 13% GHG reduction by 2030	Transport 5.2% by 2030 (NOT Binding)	
EP Proposal	45% RES by 2030	Transport 16% GHG savings target in transport by 2030	Transport 2.6% RFNBOs by 2028 and 5.7% by 2030 of which 1.2% for maritime	

Hydrogen Europe advocates to maintain the binding target for RFNBOs in transport and the sub-target for maritime transport, to ensure availability of feedstock for hydrogen applications in the sector.

FuelEU Maritime Commission Proposal (14th July 2021)

- Maritime targets on the limits on greenhouse gas intensity of the energy used on-board compared to 2020
 2025
 2030
 2035
 2040
 2045
 2050

 -2%
 -6%
 -13%
 -26%
 -59%
 -75%
- Regulation aims to reduce the GHG intensity of energy used on-board by ships by:

- It doesn't prescribe one technology to be used, only a pathway to GHG intensity reduction on board
- Scope :
 - Intra-EU traffic and 50 % of extra-EU traffic
 - Focus on ships > 5,000 GT
- Links fuel ,eligibility' to RED II
- Obligation for passenger and container ships to connect to OPS or use zeroemission technologies at berth

Hydrogen Europe advocates for a **sub-target on the use of RFNBOs in replacing specific GHG emission** to guarantee consistency with REDII targets, and ensure the development of the value chain for RFNBOs use in maritime.

This was backed by the Parliament which introduced a 2% subquota for RFNBOs for ships operators for 2030.

Extension of the EU ETS

For most business cases there is still a sizeable financial gap for hydrogen based options

EU ETS introduction timeline

- Extension of the EU ETS to cover the maritime sector could have the potential to (at least partially) bridge the funding gap, but....
- It has been linked to the MRV

 i.e. will cover only ships >
 5,000 GT which excludes most of the inland shipping sector

		2023		2024		2025		6	2027		2028 onwards	
Ship sizes and type												
Cargo/passenger ships (5000+ GT)												
Offshore ships (5000+ GT)												
Offshore and general cargo ships (400-5000 GT)										To be	decio	ded
Greenhouse gases												
Carbon dioxide (CO_2)												
Methane (CH ₄₎ and Nitrous oxide (N ₂ O)												
Phase-in												
% of emissions included in ETS scope			40	%	70	%	100	%	100	%	100	%
Reporting only (MRV) Included in ETS scope												

Source: DNV

AFIR – Alternative Fuels Infrastructure Regulation

Article 10 on inland waterway ports :

Member States shall ensure that:

- (a) at least one installation providing shore-side electricity supply to inland waterway vessels is deployed at all TEN-T core inland waterway ports by 1 January 2025;
- (b) at least one installation providing shore-side electricity supply to inland waterway vessels is deployed at all TEN-T **comprehensive inland waterway ports by 1 January 2030**.

Article 9 and 11 ensure the supply of LNG and electricity to maritime ports, to be consistent with FuelEU Maritime provisions

The European Parliament introduced amendments to ensure the supply of ammonia and hydrogen to maritime ports in article 11 – negotiations are still ongoing.

Work through

the Mobility

H2Ships Project Presentation

System-Based Solutions for H2 Fuelled Water Transport in North West Europe

H2SHIPS is an **Interreg Project** (across different Regions in the EU) to demonstrate the feasibility of **hydrogen bunkering and propulsion for shipping**, both on sea and inland waterways.

Two pilot projects :

- New hydrogen powered port vessel to be built in Amsterdam and in Belgium with a newly built hydrogen refuelling station
- Implementation of an **H2SHIPS pilot on the Seine river in Paris** after the end of the project

By the end of the project, H2Ships expects to have created the necessary conditions for uptake of its technologies by 2% of the fleet renewal.

The Project has a total budget of 6,33M€ and received 3,47M€ from the Interreg Programme > Hydrogen Europe is a partner of this project, amongst 12 others

More information here : <u>H2SHIPS - System-Based Solutions for H2-Fuelled Water</u> <u>Transport in North-West Europe | Interreg NWE (nweurope.eu)</u>

Thank You

Av. de la Toison d'Or 56-60 Brussels / Belgium

secretatariat@hydrogeneurope.eu hydrogeneurope.eu

